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NOMENCLATURE

a speed of sound

a adiabatic or isothermal wall parameter, Subsection 3.4

A cell area

c constant wave speed for stability analysis

Cp specific heat at constant pressure

D a cell dimension defined by Eq. (103)
F a factor (Eq. (105)) that keeps the inviscid and viscous time

steps to within the same order of magnitude

Fi inviscid flux vector for x-coordinate

;viscou- flux vector for x-coordinate

Gi inviscid flux vector for y-coordinate

viscous flux vector for y-coordinate

Gv inviscid flux vector for z-coordinate

Tv viscous flux vector for z-coordinate

k thermal conductivity

L matrix of the eigenvectors associated with the Jacobian Fu

M Mach number

p pressure

Pr Prandlt number

q heat flux vector

Q characteristic variable vector with components (q ,q2,q3,q4 )

Rc  cell Reynolds number 2

Re cell Reynolds number

R± Riemann invariants

S constant in Sutherland law

t time coordinate

T temperature

(u,v,w) velocity components along (x,y,z) coordinate directions
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U state vector, conservative vector

V speed, magnitude of total velocity = u+v+w2

(x,y,z) spatial coordinates

a angle of attack

3 a local angle of a solid wall with x-axis, Subsection 3.4

a coefficient for viscous changes, Subsection 3.3

39 coefficient for viscous changes, Subsection 3.3

T ratio of specific heats, typically 1.4

F CFL number S 1

bC boundary (or perimeter) of a cell C

& ij Kronecker delta function
C total energy per uni: volume
X second coefficient of viscosity

3 first coefficient of viscosity, dynamic viscosity

V kinetic viscosity

*1 direction along the inflow/outflow boundary

A diagonal matrix with elements as eigenvalues of Jacobian FU3 direction normal to inflow/outflow boundary surface

generalized curvilinear coordinates

P density

E cell diffusion number 1 12

7 stress tensor

3 Subscripts and Superscripts

3 c corrected value, Subsection 3.4

c frozen or constant value, Subsection 3.4

i inviscid

m maximum
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3n time level

p predicted value

r reference

t tangential component (along solid wall)

U Jacobian matrix w.r.t. state vector

v viscous

w wall

3l a surface component for inflow/outflow boundary

component normal to the inflow/outflow boundary

3* non-dimensional form

Cfree stream
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PMS Root Mean Square

SCRAP Strategy Combining Regionally Adapted Processes

SSI Spectral Sciences, Inc.
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1. INTRODUCTION

1.1 Problem Overview

The capability of carrying out numerical computations of flow fields

Pround finned missile configurations is of significant importance to the U.S.

Army. ( 1- 2 )  Spatial marciing techniques have previously been applied to

predict three-dimensional viscous flow about axisymmetric bodies and finned

geometries of interest to the Army for low angles of attack. (3 - 7 ) For such a

technique the solution is marched spatially down the body in the predominant

flow direction. However, this technique is only applicable to problems for

which the flow is supersonic and does not contain imbedded subsonic regions or

regions where the flow separates in the marching direction. A time marching

subdomain adaptive technique that utilizes Navier-Stokes (NS) equations for

separated regions or in the vicinity of solid surfaces, and Euler equations

elsewhere, was proposed to overcome the shortcomings of spatial marching

techniques. (8 ) This technique was titled Strategy Combininq P-gionally Adapted

Processes (SCRAP).

TI.e : -rall stated objective of the research is to carry out 3-D

numerical simulations of finned missiles and guided projectiles which have a

gap between the inner fin edge and the body surface. The simulation of the

flow field about these configurations at a non-zeru angle uf Ltack is

important from the standpoint of understanding the physical phenomena and

predicting the magnitude of the forces acting on the fins and the projectiles.

The flow field simulation of the full configuration (rather than just the fins

and gap regions) is necessary because the flow field associated with the body

affects the one associated with the fins and vice-versa at high angles of

attack. The flow fields are geometrically complicated because of the 3-D

configurations and the close proximity of fins and body. This makes the

process of initial grid generation complicated. Also, the fin/body

configurations have complex physics associated with them. This may include

shock waves, boundary layers, recirculation regions, etc., and their

interactions. It is important to consider numerical schemes that have good

shock-capturing properties. Full NS computation with an appropriate
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turbulence model may be prohibitively expensive. However, full NS solutions

is only needed in the gap regions and in the boundary layers or recirculation

regions. In addition, it may also be needed in the regions of interactions of

features like shock waves and boundary layers. For much of the computational

domain, Euler solution is adequate. Therefore, it makes sense to consider

different numerical schemes in different selected regions to speed up the

convergence of the calculation.

Although the SCRAP technique was originally proposed to simulate

transonic or supersonic flow about finned missiles and guided projectiles,

this methodology can be applied to any physically and/or geometrically complex

flow field. The issue of the complexity of the grid generation can be

partially simplified by considering a multiblock gridding technique. In this

approach each component of the overall configuration has an independent grid

structure which is called a block. The multiblock SCRAP technique simplifies

physical complexity by associating a numerical scheme to each of the blocks.

Thus, one can have viscous blocks where NS equations are solved and inviscid

blocks where one carries out the solution to Euler equations. Such a

scheme-splitting technique can efficiently model complex physics if the

domains of viscous and inviscid regions are known a priori. The SCRAP

technique addresses this issue by considering interaction blocks where a

decision is locally made whether to use Euler or NS equations. This dynamic

physics switching is termed here as physics (or equation) adaptation. The

interaction blocks will be important for the cases where the viscous/inviscid

interaction region develops as part of the numerical solution. The SCRAP

technique also implements subdomain adaptation in which the algorithm

automatically implements additional spatial resolution by locally dividing

cells in the regions of enhanced gradients of selected flow field variables.

1.2 Ovprview of Phase I Accomplishments

I- This subsection summarizes the key accomplishments of Phase I. These

accomplishments pertain to the implementation of the overall SCRAP technique

in two spatial dimensions. Extension to 3-D will be carried out in Phase II.

The accomplishments include:

-2-
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I Development of an Interactive Block Grid Generator (IBGG).

0 Development of a general purpose code that implements physics

and subdomain adaptation on multiblock grids.

* Demonstration of the potential of SCRAP technique for a model

problem.

tFor the Interactive Block Grid Generator (IBGG) the flow domain is

divided into blocks, and each of these blocks is associated with a given

numerical scheme. These blocks are classified as Euler, Navier-Stokes,

Thin-Layer Navier-Stokes (TLNS), or interaction, depending upon the scheme

being utilized. Interaction blocks are the ones in which a local decision is

made for each of its cells whether to use an Euler or NS solver. In other

words physics adaptation is carried out on these interaction blocks. The user

specifies the nodes of the boundaries of the blocks which must have

node-to-node matching at inter-block interfaces. Utilizing the interblock

boundary point information the interior grid of each of the blocks is

generated. Subsequent to that, all the nodes that are multiply defined are

removed and the overall boundary nodes are adjusted. Then, all the cells with

the same numerical algorithm are stored together in the computer memory; these

cells need not be physically contiguous. Cells in each block can be

subsequently spatially divided by the algorithm to incorporate resolution

adaptation. Regions of cells can also be initially manually subdivided to

incorporate additional resolution or pre-embedding. Various stages of the

grid assembly can be graphically viewed and debugged interactively in tL.is

IBGG. For example, nodes can be moved individually or in concert with an

elliptic grid generator. Similarly the information about the connectivity of

various elements (cells, nodes, boundary points) can be queried interactively.

The overall algorithm is decoupled into a viscous and inviscid

contribution. This means that Euler equations are solved everywhere,

including the viscous region. This is followed by the determination of

viscous cells in the interaction blocks. These cells are lumped together with

cells in the viscous regions. Additional viscous contributions (corresponding

to NS or TLNS equations) are computed for these viscous cells and added to the

inviscid contributions. The decoupled nature of the algorithm allows

different time steps to be taken for viscous and inviscid contributions. This

3 --



is in line with the concept of local time stepping for carrying out solucions

to steady state problems. Physics adaptation is incorporated by finding the

maximum shear stress in the cells of viscous and interaction blocks. Those

cells of the interaction block for which the shear stress is more 1% of the

maximum shear stress are regarded as viscous cells. Subdomain adaptation is

carried out by examining the gradients of selected flow variables in the

domains. The cells for which the first differences of these variables exceed

a threshold limit are locally subdivided.

The potential of the SCRAP technique is demonstrated for a supersonic

flow over an 8% circular arc cascade. This demonstration clearly establishes

that simultaneous physics and resolution adaptation works for the sample

problem. The technique provides significant savings in CPU time and storage

over conventional structured grid algorithms employing a full NS solver. An

increase of about two orders of magnitude in computational speed was achieved

when compared to a conventional full NS solltion over a fine grid of the same

mesh size as the smallest grid size chosen by the spatial resolution

adaptation.

1.3 Overview of Report

The following section summerizes the technical objectives of Phase I and

the status of accomplishments. Section 3 describes the details of the methods

utilized to achieve each part of the technical objectives. Section 4

describes the actual numerical results obtained by utilizing the SCRAP

technique. Conclusions of this report are summarized in Section 5.

4 --
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3 2. PHASE I TECHNICAL OBJECTIVES

The stated specific objectives of the Phase I research8 were:

I. Implement integration schemes for solving Euler, thin-layer
Navier-Stokes (TLNS) and complete Navier-Stokes (CNS) equations

within different relevant zones.

I 2. Generate data management connectivities that will allow viscous

or inviscid formulation on an element-by-element basis.

3. Specify conditions to be applied at zonal interfaces.

4. Demonstrate the potential of using SCRAP technique for
predicting resultant forces on a practical finned missile
configuration with a gap between fin and body.

5. Document the results and conclusions of Phase I in a Final

Technical Report.

All these Phase I objectives have been successfully completed for two spatial

dimensions. Extension to three spatial dimensions will be carried out in

* Phase II. Although the development of an interactive block grid generator

(IBGG) was not mentioned in the list of objectives, it was carried out as part

of the effort to facilitate initial grid generation. Similarly the end

product of Phase I was promised to be a feasibility study report that would

establish the effectiveness of a numerical procedure that incorporates physics

adaptation for distinct zones of a multiblock system. We have established

this for subdomain adaptation as well. The methods used to achieve each part

of the Phase I technical objectives are detailed in the following sections.

The Phase I effort successfully demonstrated the basic feasibility of

simultaneous physics and resolution adaptation for multiblock grids. The

technique provides significant savings in CPU time and storage over

conventional structured grid algorithms employing a full NS solver over a fine

grid of the same mesh size as the smallest grid size chosen by the spatial

resolution adaptation. The SCRAP technique yields essentially the same

results as the global calculation over a fine grid system. The results were

also compared with previous computations and were found to be in good

agreement. This successful demonstration of proof of concept in Phase I has

I - 5-
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formed the basis for extension to 3-D in Phase II. The ultimate objective of

the proposed effort is to deliver a complete and general purpose SCRAP

software package that would be user friendly, modular, and would incorporate

all the relevant physics pertaining to complex 3-D objects in flow fields

encompassing subsonic to supersonic Mach numbers.

I
I
I
I
I
I
I
I
I
I
I
I
I
I - 6-
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* 3. NUMERICAL DETAILS

I This section describes the details of the methods utilized to achieve

each part of the Phase I technical objectives. The section starts with the

description of a general set of full Navier-Stokes equations which can be

utilized as a physical model for the flow simulation. Subsection 3.2

describes the normalization of these equations. This is followed by the

description of the inviscid and viscous terms in the numerical solver in terms

of an unstructured finite volume cell-vertex scheme. The algorithm is shown

to be decoupled into contributions from viscous and inviscid terms.

Subsection 3.4 describes the implementation of boundary conditions.

Subsection 3.5 presents a von Neumann stability analysis for a one-dimensional

convection-diffusion model problem which suggests that different time steps

can be used for the contributions from viscous and inviscid terms in the

overall algorithm. Subsection 3.6 describes an interactive block grid

generator that was developed as part of the Phase I effort. Subsection 3.7

describes the implementation of physics adaptation in the cells of interaction

blocks.

A brief description of the new contributions and their significance is as

* follows:

* Development of an Interactive Block Grid Generator that allows
grid splitting in user-defined blocks corresponding to specific
schemes. The interior domain block-interfaces can be moved to
generate "better" grids.

" Decoupling of the integration scheme into contributions from
inviscid and viscous terms. This allows efficient
implementation of the algorithm for viscous and inviscid blocks.
Different time steps for these terms accelerate the convergence

to steady state.

" Efficient implementation of physics adaptation for cells of
interaction blocks. For these cells it is locally decided
whether to use Euler or NS solver.

* Development of a general purpose code that efficiently
implements physics and subdomain adaptation on multiblock grids.

I - 7-
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3.1 Governing Equations

The complete Navier Stokes equations describe a general 3-D compressible

viscous flow of a gas and are given by the following vector form

bu b~ b~ bH' _ Fv bGv bHv
bt bx y 6z bx by bz

where t represents the time and (x,y,z) the spatial coordinates as independent

variables. The superscripts i and v signify inviscid and viscous terms,

respectively. The state vector U, inviscid flux vector F- and viscous flux

vector Fv are given by

I U = [p, pu, pv, pw, C]T (2)

Ii = (Pu, pu2 + p, puv, puw, (C+p)uJT (3)

Fv = 0 ,xy' xz' UTxx +VTy+WT xz-qx ]T (4)

where p, p, (u,v,w), and C are the density, pressure, velocity components, and

total energy per unit volume, respectively and T denotes the transpose

operation. Furthermore -r and q represent the stress tensor and heat flux,

respectively. The representation of the flux vectors G and H is analogous to

that of F and is not shown here. Euler equations are obtained by setting the

viscous flux vectors equal to zero.

Additional relations are required to complete the system of equations.

An equation of state that connects pressure with total energy per unit volume

is

I e - V2  1 P
P - 2- + CpT - - + -(5

0 2 p 2 T-1 p

I where V is the magnitude of total velocity

I v = lu2 + v2 + w2 (6)

I
3 -8 -
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I p is the specific heat at constant pressure and T is the temperature of the

gas. A calorically perfect gas is assumed for which the specific heat C is a

constant.

The shear stress tensor T is usually represented as a linear

phenomenological law in terms of first and second viscosity coefficients (U

and X). This in indicial notation is represented by

3

u -+ ) + k (7)
bi b x1  ) _k=l

where 6ij is the Kronecker delta

Iij = 1 if i=j ; 0 otherwise (8)

The first and second viscosity coefficients are usually connected by

utilizing Stokes hypothesis which states that the sum of the diagonal elements

of the shear stress tensor must equal zero. This hypothesis is obviously

* valid for a static fluid but is assumed to hold even for a fluid in motion and

results in

2= - (9)
3

m As an example, the viscous shear stresses for a 2-D flow are given by

P bv + w 2 (u bv
= --+ --) u + X(- + - -2-) (10)Xx k + 2 ) bx by bz )  = i bx - by )

(X+2)AV u bw 2 (2bv -bu

T yy (+2 by 7x + )  by bx

i bU+ bvxy = (by x )  •12

The dynamic viscosity coefficient p is a strong function of temperature T and

is frequently modeled by the Sutherland law

I T__L)3/2 Tr_+ S
- ( T ( (13)

Pr Tr T +S

I - 9-
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where the subscript r denotes a reference condition and S is a constant which

is characteristic of a given gas. For air at moderate temperatures, S = 110.4
I K.

The heat flux q is generally related to the thermal conductivity k by the

Fourier law

- T 7 + T 7 T

q = -k VT = -k (- i + I + - k) (14)I x by bz

A constant Prandtl number is generally utilized as a relation between dynamic

* viscosity and thermal conductivity

3 Pr = k (15)

For air at normal conditions, Pr = 0.72.

3.2 Normalization of Governing EquationsI
Let the subscript r indicate some reference conditions and denote the

non-dimensional quantities by asterisks, i.e., define

x = x Lr y = y Lr  z = z Lr

t r  C = C * r  (16)
u = U Ur v = v vr  w = W wr

uP*r T = T = P Pr

I In order to keep the form of the dimensional and normalized equations

invariant, the continuity equation dictatesm Lr
tr  Ur- 

17

The inviscid part of the momentum flux terms yield

u = Pr (18)r Pr

I
I - 10 -
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3 whereas the iniscid part of energy flux term implies

Er = Pr = PrUr (19)

The viscous flux terms of the momentum equations imply the following

non-dimensional parameter of the fluid flows

I
Re - , (20)

which is known as the Reynolds number. Thus the normalized form of Eqs. (1-4)

remains invariant, except that the shear stress terms have to be multiplied by

3 the factor Re- I (i.e., p is replaced by P*/Re). As an e;.ampie, the normalized

form of Txx in Eq. (10) becomes

* 2* ( u* - v* - w* (21)
xx3R x* by * 6z* ,

where p is given from the Sutherland law as

P * = (T*)3 /2  1 + S/Tr

T + S/Tr (22)

5 The non-dimensional heat flux term in the energy equation takes the form

Y* * * T* -

q = r ( ( + j + -- k) (23)T- eP x* by* bz*

Henceforth, the non-dimensional equations will be written without asterisks.

3 Free stream conditions are used in this report as the reference basis. Hence,

the normalized free stream values of density, pressure, and temperature will

3 each be unity, whereas free stream velocity components will be

3 u0  = 4 YMCosa v = MOSinat (24)

where a is the angle of attack and M. is the free stream Mach number. The

normalized free stream total energy per unit volume from Eq. (5) is

IO = 2 + Y-1 (25)

I -11i-
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3 3.3 Integration Scheme

A new, conservative, finite volume scheme is developed for viscous

(Navier-Stokes) equations as an extension of an earlier Euler scheme for

unstructured quadrilateral grids. Since the flux balance is carried out on an

element by element basis (i.e., no exterior properties are utilized for a

given cell), the scheme is suitable for locally embe ded unstrurt-ured grids.

I The viscous and inviscid changes for a given time step can be decoupled so

that cells can be updated independently for these effects. This decoupling

I can allow substantial savings in computer resources by avoiding computations

of viscous terms for the regions where they are negligible.

1 3.3.1 Inviscid Terms

I The integration scheme for inviscid terms has been previously introduced

in Refs. (9-12). The integration scheme is based upon a second order

accurate, Lax-Wendroff, finite volume scheme due to Ni. (1 3 ) Conservation

variables U and fluxes Fi, G i are all stored at cell vertices and flux balance

can be carried out for each cell independently for a given time step At.

Consider the flux balance for a cell C with general vertices i,j,k,l, as

shown in Fig. 1, which results in the distribution formulas for the

contribution of cell change to its corner nodes

IS" ic A tAr _ Atd
1 4 [Ai A

I~~ 1 a _aIU C = 4 + A-A - ]
A A

&U =1 AUi + LtAr +- A
kC 4 A A

SU ic = I (AU' - AtAF + -LAt A (26)

1 4A At

The superscript i signifies Lhe inviscid terms, whereas subscripts like iC

signify the contribution of cell C to node i. These distribution formulas

allow for different time steps At and cell volumes A for elements adjoining a

1
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Figure 1. An Arbitrary Cell C with Nodes i,j,k,l.

common node. The cell change AUi in the above relations originates from a3 flux balance for cell C, i.e.,

l i\ i

3 U = F'(yl-i) - G '(xl-xi) + F (k-l - G (k-l

I (yj-yk) -e(Xj-Xk) +F(yi-yj) - G i(xj-xj) (27)

where subscripts , e, n, w indicate the south, east, north, west f luxes,

S frespectively. Thus, for example

a 2 i i

3eThe flux changes AF and A are due to second order changes that provide

stability to the algorithm and are given by

Ar = (Yn FU x '-G"j-)AUi2M 7Fi 25G

A3 - (x bG y -- )A (29)
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3 The flux changes involve metrics x,, yF, xn, y.; a typical example of a metric

term for cell C is

I- = Y Yk Yl - Yi - Yj (30)
Ay )ns 2

3- Yn - Ys Yk + Yl - Yi Yj (31)
- yj 2

The Jacobian matrix FU is given by

3 0 1 0 0

Su2+ v2=F 21  (3-T)u (l-T)v

FU  -uv v u 0 (32)

I uF 21+u_+)+
u( (l-T)u 2  uv(l-T) uT.. P P

The Jacobian matrix GU is similar to Fu and is not shown here.

I 3.3.2 Viscous Terms

3 A new scheme is presented here for treating the viscous terms which, like

the inviscid scheme, utilizes only the properties interior to a given cell C.

3 Only the first order contribution from the viscous terms is considered here to

keep the computations within the cell C. Note that the only reason that second

order terms were considered for the inviscid formulation was to impart

stability to the numerical algorithm, since a first order Lax-Wendroff

inviscid scheme is inherently unstable.

The flux balance around the boundary bC of cell C of Fig. 1 (See Eqs.

(26-27)) yields

AUt f(Fidy - Gdx) - -f(Fvdy - Gvdx) (33)

6 C bC

which can be rewritten as

1
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6c

where AU i has been evaluated in the previous subsection and AUV will be

evaluated here. This equation clearly shows that the viscous and inviscid

flux terms can be decoupled. It is apparent from Eq. (26) that the first

order contribution to change at any of the corner nodes is one-fourth of the

flux balance for the cell C. The same is also true for the viscous changes and

has been rigorously proved in Ref. (11) for transformed coordinates. Thus the

viscous terms can be handled in a simple manner once the viscous flux balance

for the cell C is carried out. As an example of the evaluation of AUv

consider the contribution from x-momentum equation. Thus,

IU(2v At u~ ~ v

AU(2) = A--{aw(y - yi) (2, -u ) - _u(xl x u)(- + 6V ), +A x by)W - w(X - (by bx

-n(yk - Yl) (2-- y)n - 0 n(xk - xl)( b ) n +

(u bv au 6vIe(Yj - Yk) (2- - y)e - Be(Xj - xk)( - + _)e +
xv

s(y - yj) (27 -u  - ) -- x)( u + -)S (35)bx by) - sX j(by 6x s }  (5

where (2) indicates the x-momentum equation contribution. The variable

coefficients a and 0 are given by

I C = p= e (36)
3 Re Re

I The determination of these coefficients at the appropriate faces is easy to

formulate, e.g.,

198 = 2R (" i + Pj) (37)

where p is evaluated from Eq. (22). The determination of the gradient terms,

like LU r introduces complications if one insists on a finite volumeW'

approach. One has to either employ a larger staggered stencil (thereby making

the scheme unsuitable for unstructured grids) (14) or make approximations that

3 the metrics and areas of the cells surrounding the given cell are nearly equal
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3 to the corresponding quantities in cell C. (1 5 ) A new finite volume approach is

presented here for unstructured grids in which such approximations are avoided

by considering auxiliary staggered cells which lie completely within the cell

C. These interior staggered cells are shown in Fig. 2. Thus for the

determination of bxle the cell jkns is used, however the line integration

would only yield the gradient at the centroid ce of the staggered cell rather

than at the edge node e. However, if values at the centroids ce, cn, cw, and3l cS of all the staggered cells can be determined, then one can extrapolate

values at the edge nodes e, n, w, and s. As an example, consider the

evaluation of _u and -- at the centroid ce by applying Green's theorem overb x by ( 4
the area ijew. The line integration around the auxiliary cell yields (1 4 )

u 1 Uw + Ui
(bX)cs -A/2= 2 (Yi - Yw) + uc(yw - Ye) +

u e + Ui)(ye yj) + us(y j - yi)} (38)

bU 1 UW + Ui
(y)C - A/2 2 (xi - xw) + uc(xw - xe) +

Ue + Uj)(xe xj) + us(x j  xi)} (39)

Here the values us, ue, etc., are given by the averages

us -1 j (40)

1

uI 4 i + uj) u(0u 1

uc = i + + uk + Ul) (41)

3 Note that the area of the staggered cells has been approximated here as

one-half the area of the cell C under consideration. This approximation will

not hold for highly skewed cells. However, this is not a limitation of the

overall approach since the actual areas of the staggered cells can be easily

determined. These areas will have to be determined only once for the whole

computation.

1
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-- A biquadratic extrapolation can be used to determine values zs, Ze, Zn,

and zw once some z values at the centroids of the auxiliary cells are

determined. These extrapolations yield

1

= 4( 9Zcs + Zcn - 3zce - 3Zcw)

-- 1
zc  = L( 9Zce + Zcw - 3zcs - 3 Zcn)

Zn  = i( 9 Zcn + Zcs - 3zce - 3zcw)

z = i(9Zcw + Zce - 3 Zcs - 3 zcn) (42)

3" The computations of viscous flux changes for cell C can then be determined by

using an equation like Eq. (35). The viscous contribution to changes for

3 nodes i,j,k,l is then

l1 3Ui,j,k,l = AUV (43)

I
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5 3.4 Boundary Conditions

The solution of the fluid dynamic equations is determined by the initial

and boundary conditions. The initial condition for the cases in this report

is typically taken as that corresponding to a uniform flow. A module that

utilizes bilinear interpolation, based upon a previous solution (on a somewhat

different grid), has also been developed to generate initial conditions for a

given new grid system. Several different types of boundary conditions, such

as those for inflow, outflow, rigid walls, symmetry walls, etc., are required

5 for computing solutions. Two separate inflow/outflow boundary conditions are

presented here.

3 3.4.1 Free-Slip Rigid Walls

3 For inviscid flow, the appropriate physical condition on a solid surface

is that there be no flow normal to the surface, or equivalently that the flow

3 direction be tangential to the wall. The application of the free slip rigid

wall boundary condition is explained in Fig. 3 for a node i, on a solid wall

3 which makes a local angle a with the x-axis.

a
I

I
I
I

3 Figure 3. Physical Cells and their Images Adjacent to a Wall.

1 -18 -



I
I

The application of the numerical scheme to cells A and B after

integrating all the cells in the domain yields the following initial change at

*node i

&Ui = &UiA + &UiB (44)

The predicted change at node i is taken to be that from cells A,B and their

corresponding mirror images A',B', which contribute the same values, i.e.,

&UP' = 2SU i  (45)

The superscript p indicates predicted change. If these values are not

corrected, then the wall surface would be a line of symmetry for all

variables, including of course, the normal component of the velocity. The

I local tangential component of the velocity is given by

Vt = uCosa + vSina , (46)

3 and only this is used to reassign new velocity components along the coordinate

directions, i.e.,

I u = VtCosa , v = VtSina (47)

3 Thus, the corrected values for the changes are

i = (PVt)*Cosa - (Pu)n Component 2 (48)

I(pv)ci = (vt)*Sinct - (pv)n Component 3 (49)

SU. = &up Other Components (50)

where

(Pvt)* = [(pu) i + 6(pu)?] Cosa + [(pv). + 6(pv)P] Sina (51)

I - 19-
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here the superscript n indicates the values of the dependent variables at the

previous time level. The superscript c indicates the corrected change which,

when added to the old dependent variables, yields the values at the new time

level n+l.

I 3.4.2 No-Slip Rigid Wall

The correct constraint at a viscous wall is the no-slip condition, which

implies that the velocity components u,v vanish at a solid boundary. The

3 temperature can either be prescribed (possibly isothermal wall), or its

gradient can be set to specify a heat flux (possibly adiabatic wall). The

3 predicted value of temperature can be obtained by solving the caloric equation

of state and accounting for the predicted change in density and energy per

unit volume, i.e.,

TP = (,-l) n+2 9, (52)

3 n+2p

Note that the corrected value of density is taken as

Ic = pn + 2&p (53)

The corrected value of temperature at the boundary node is

I Tc = aTP + (l-a)T w  (54)

3 where a=l for an adiabatic wall and a=O for a given wall temperature Tw . The

corrected value of energy per unit volume is then

Cc = TcPc (55)
T-1

I 3.4.3 Inflow/Outflow Boundary Conditions

I Two separate approaches are presented here. The first one applies the

method of characteristics for Euler equations in a direction normal to the

local grid surfaces. The second method applies the usual Riemann invariants

3 -20 -
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for isentropic flows at these boundaries. The former approach is somewhat

complicated but should be valid for cases when strong shock waves intersect

the inflow/outflow boundaries. Both the approaches neglect the viscous terms

at the exterior flow boundaries. We first present the characteristic

approach.

3 Let us transform the flow system such that the velocity uF corresponds to

that entering normal to the grid system and un corresponds to the tangential

direction. This is shown in Fig 4. The following relations for the

transformation of velocities hold

I uF = uSina - vCosa (56)

3 un  = uCosa + vSin( (57)

3 with the inverse relations

U = uSina + u )Cosa (58)

v = u Sina - uFCosx (59)

where a is the angle which a grid boundary surface makes with x-axis.

The governing equations for the transformed coordinates are

I -+ -F + -O = 0 (60)bt bF bt

I where only the inviscid flux vectors are considered. It is assumed that the

boundaries are far enough away from the body that the viscous effects are

3 small. Since the governing equations are quasi-linear, they can be written as

U + FU u = 0 (61)

The Jacobian's FU and GU have been presented in Subsection 3.3. We will now3 neglect the variations along the tangential direction, i.e., set ?U/by)=O.

I
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This is tantamount to assuming that the stream lines are locally straight and

the velocity u? in the tangential direction is a constant. If L denotes the

matrix of eigenvectors of Fu, then

L - + (L Fu L L- = 0 (62)

which can be written as

- + A- = 0 (63)It bt

where

i Q = LU (64)

i is the characteristic variable vector in which L is assumed to be locally

constant. Furthermore A=LFuL-1 is a diagonal matrix whose elements are the

eigenvalues of Fu -

* y,

'V
I u\

ia
i Figure 4. Coordinate Systems for Inflow/Outflow Boundaries.
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The eigenvector matrix is given by

au a
V2 T- -(u + a -v 1

V2  au a 1
2 T-1 T-1

L = (65)

-v 0 1 0

u2-v 2  a2____--u 0 1
2 T-1

in which a is the speed of sound which is given by

a 2 = 12 (66)
P

The corresponding diagonal matrix for the eigenvector matrix L is

u-a 0 0 0

0 u+a 0 0A 0 (67)
o 0 u 0

0 0 0 u

Equation (63) represents a decoupled system of equations with the differential

change in characteristic variables given by

dQ = LdU (68)

or

I
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au a
V2 + (uF +  -u 1 p uF-a

V2  auj a
2 T-1 j-I uG) -un 1 u-+a

d with (69)
- 0 1 0 Pun u

u2-u2  a2

2 - a2 -u 0 1 C uF

The third characteristic variable (third row) is the easiest and it yields

pdun=O or that un is a constant along the characteristic direction dt u-

Other characteristic variables yield (after some simplification)

dq = d- Padu = 0 along uF - a (70)

T-1 T-l F

ap = + dp = 0 along uF + a (71)Idq 2  - d T-i
Y-I

dq3 = pdun = 0 along uF (72)

I a2
dq4  = -I- i dp = 0 along u, (73)

T-1 Y-1

Here qj (j=1,2,3,4) are regarded to be the elements of the characteristic

vector variable Q. Assuming the coefficients of the above equations to be

locally frozen (values obtained prior to updating), these equations can be

easily integrated. The frozen values are shown here to be subscripted by

letter c and the characteristic constants are

I
I
I
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ql= p - PcacUF (74)

q2 = p + pcacuF (75)

q 3 = u (76)

q4 = p -acP (77)

Since the process of updating (Un +l - Un +6U) involves the contributions

to nodes from the interior domain, the values based upon Un + l should be used

for characteristics inferred from the interior computational domain.

Similarly, the characteristics based upon external conditions should either

utilize free stream values or values based upon Un . Wherever these

characteristic variables are inferred from, the primitive variables can be

computed from the following relations

2 q+q 2  (78)

un = q 3  (79)

uF q 21ca c  (80)2P cac

qlq 2 -2q 4  (81)

2a 2

For each type of characteristic boundary condition, Pc and ac are determined

from Un. The specific boundary condition prescription depends upon whether

the flow field is subsonic or supersonic.

For supersonic inflow all the characteristic information comes from the

exterior, and it is implemented by setting the changes SUi at such nodes equal

to zero. For supersonic outflow all the characteristics are inferred from the

interior, and the changes predicted by the numerical scheme itself can be

used. Thus, no special treatment is needed for supersonic exit boundaries.

For nubsonic inflow, ql is inferred from the updated Un+l values and q2 , q 3 '

q 4 are based upon free stream values. For subsonic exit qI is computed from
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free stream values (or other specified exit conditions), whereas q2, q3 , q4

are computed from updated Un+l values.

We now describe the alternate inflow/outflow boundary conditions based

upon Riemann invariants. For the subsonic exit the outflow pressure p1 is

specified. For supersonic flow with some imbedded subsonic regions this

pressure is inferred from the supersonic portion of the flow (at the place

where the Mach number just becomes supersonic). Let P2 ' u2 ' v2, P2 be the

flow properties at some node interior to the computational domain. The

density at the outflow node can be determined from the constant entropy

* condition

Pl l/T
P1 = P 2 (P2 ) (82)

The velocity uI can be determined from the R+ invariant which is a constant
dx

along the characteristic d = u+a, i.e.,

ul = R+- -1 'I (83)

* where

R+ = u 2 +2T-i-T 2 /P2  
(84)

The velocity v, is determined from the tangency condition

V i = v 2 () (85)

Once p, ul, vl, p1 are known, the energy C, can be determined from the

caloric equation of state (5).

For the subsonic inflow boundary, total pressure, total temperature and

flow angle can be specified while the Riemann invariant R_ can beI u
extrapolated from the interior of the flow. Note that

R-. = u - Y2 4l / (86)

dxis a constant along the characteristic d= u-a.
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I 3.5 Stability Analysis

An important step in the development of new algorithms is the

determination of time step restrictions through a stability analysis. This

section explores the choice of a time step for the explicit schemes presented

in Subsection 3.3 through a one-dimensional convection-diffusion model

equation by utilizing von Neumann stability analysis. Since the viscous and

inviscid term contributions have been separated out in Subsection 3.3,

different time steps can, in principle, be applied to these terms. The

* generalization to two-spatial dimensions is also carried out in this section.

5 3.5.1 One-dimensional Convection-diffusicn Model

The one-dimensional x-momentum equation, as presented in Subsection 3.3,

can be written in the following non-dimensional form

-- p(pu) + 6x(pu2 + p) - x(Tbf 4p {eu (87)

5 Considering the viscosity p to be a constant and subtracting off the

continuity equation, this simplifies to

5u + u-b- + - 4p 2u (88)
bt bx p bx 3pRe x2

I The model equation is considered to be similar to this and to have a constant

wave speed c, i.e.,

where one can regard the constant v to be proportional to the kinematic

I viscosity

V 4p (90)
3 pRe

Discretizing Eq. (89) according to a Lax-Wendroff(lb) scneme yields
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n+l - = - -+ + U_ i m 2{~~2 (Ui-I Ui+l) + 2-U- Ui + U-)

+ E(Ui_ 1 - 2U i + Ui+l) (91)

where

-- cAt (92)

Ax
2

is the CFL (Courant-Friedrichs-Lewy) number and

1 vAt (93)
-- Rc  Ax2

is the reciprocal of the cell Reynolds number, which shall be referred to here

as the cell diffusion number. Applying the standard von Neumann stability

analysis to Eq. (91) yields the following constraint

r2 + 2E : !: 1 (94)

This constraint is a combination of the CFL restriction

r s 1 (95)

which holds for inviscid flows, and a diffusion stability limitation

1
E - (96)me 2

which states that the cell-Reynolds number has to be greater than 2 when the

convection term is negligible. On account of Eq. (95), the combined

constraint for the convection-diffusion problem can be revised to yield a more

* restrictive form

Sr + 2E 1 (97)

3 which yields the following expression for time steps
( 17 )
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At r (98)
C+V/AXE

However, since the viscous and inviscid parts ctn be integrated out separatelyI- for Ni scheme, there is no need to implement the above restrictive form on the

two contributions. The inviscid time step follows from the CFL restriction

(Eq. (95))

Ax
At i  A (99)u+a

where u is the flow velocity and a is the speed of sound, whereas the

subscript i denotes inviscid time step. Note that the constant wave speed c

has been replaced by the maximum eigenvalue, u+a, of the 1-D system. The

viscous time step follows from the diffusion restriction

At 1 Ax 2  3pReAx2E (100)-- 2 v 4p

where the subscript v indicates the viscous time step. Hence the ratio of the

3 two time steps is given by

Atv 3pReAx(u+a)E (101)

At i  4(0

Utilizing the normalized free stream values for these quantities, this ratio

of the two stable time steps can be shown to be

-- Atv 3--v Re Ax _TT (I+M,) (102)

At i  8

where T is the ratio of specific heats and M is the free-stream Mach number.

Thus for a large Reynolds number flow, the viscous time step can be orders of

magnitude larger than the inviscid time step. For such a flow, if one

utilizes a conventional coupled scheme in which the time step At is the

minimum of Ati and Atv (or a hyperbolic mean as suggested by Eq. (98)), then

it will take substantial computer resources to converge on the viscous

regions. In the spirit of local time stepping, the viscous and inviscid

* contributions can be updated at their respective time restrictions for the
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uncoupled algorithm developed in Subsection 3.3. This will allow the

algorithm to converge significantly faster compared to conventional uncoupled

schemes.

i 3.5.2 Time Steps in 2-D

The stability limit for the linearized Euler equations from the analysis

of a 2-D wave equation yields (I I )

Ati 1 1
A = min{ , (103)

where A is the area of a cell under consideration and

D2  = Ax2 + Ay2  (104)

The quantities Ay.) = Ayns , Ay = Ayew, etc., are the metrics as presented in

3 Subsection 3.3.

The generalization for the viscous time steps is also straight-forward,

I i.e.,

3pRe D
Atv 4 AE min { ,-- (105)Atv -4UD n D }

1 3.5.3 Actual Implementation of Time Steps

3 The system of equations becomes numerically stiff for very high Reynolds

number. It is clear from Eq. (102) that for such a case the viscous and3 inviscid time steps become highly disparate. Since these time step

restrictions have been derived from a linearized analysis, it is no surprise

that the computations become unstable for non-linear systems of equations for

high Reynolds number flows. The stiffness problem is addressed in this study

I by computing a maximum time step for each cell

Atm = F min (Ati, Atv) (106)
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where F is a large factor that keeps At i and At v to within the same order of

magnitude; a maximum value of F=10 will accomplish this. The inviscid and

-- viscous time steps are then adjusted as

At i = max(Ati, Atm) (107)

Atv = max(Atv, Atm) (108)

Note that the above ad-hoc recipe for time steps still uses different values

for viscous and inviscid terms, but limits their disparity to within an order

of magnitude variation.

* 3.6 Interactive Block Grid Generator

I The generation of initial grids for complex geometries can be a difficult

task. The grid generation for even simple flow fields with multiple embedded

3 solid objects can be troublesome. The issue of the complexity of the grid

generation can be partially simplified by considering a multiblock gridding

3 technique. Subdomain adaptation or automatic division of cells in the regions

of enhanced gradients of selected flow field variables, can be used to further

simplify this process.

For an initial grid generation an interactive block grid generator (IBGG)

has been developed as part of the Phase I effort. The IBGG subdivides the

flow domain into blocks which are simply connected regions. Each of these

blocks is associated with a given numerical scheme. These blocks are

3 classified as Euler, NS, TLNS, or Interaction, depending upon the scheme being

utilized. In the iiiteraction blocks a decision is locally made whether to use

* Euler or NS equations.

In the IBGG approach each block of the overall configuration initially

has an independent grid structure. The topology of one block has no bearing

on the rest of the blocks, except that there must be a node-to-node matching

across the interfaces of contiguous blocks. The user specifies the nodes of

the boundaries of the blocks and a check is made for node-to-node matching at

inter-block interfaces. Although overlapping interzonal interfaces provide

3 maximum geometrical flexibility for complex configurations, such overlapping
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meshes were not considered for this research. Overlapping algorithms are

non-conservative in the sense that interpolation schemes are needed to

accomplish intergrid property transfer. Furthermore, the logic of coupling an

overlapping grid scheme with a physics and subdomain adaptation would have

become unduly complicated.

-- Figure 5 shows the first step in the interactive block grid generation.

The geometry corresponds to an 8% circular arc cascade with a flap placed near

the trailing edge of the arc. The user has selected 14 blocks. The circles

correspond to the user selected node points of the block interfaces. The user

has clustered the node points near the solid surfaces. Only part of the

overall block system is shown. As shown in Fig. 6, the user also specifies

the numerical schemes to be used on individual blocks. Here E stands for

I- Euler scheme, V for a viscous scheme, and I for an interaction block.

For the developed IBGG, the geometry of each block face can be specified

in terms of cubic polynomials. Utilizing the interblock boundary point

information, the interior grid of each of the blocks is generated via an

algebraic grid generator. This step also determines the connectivity arrays

for each cell, node and boundary point in each block. Note that additional

nodes will exist at the time of assembly of the overall grid when the points

on the contiguous boundaries coincide. These multiply defined nodes are

0.5 ...... ..

-- I.qqe ,1f1.eo

V

-- 0.3

13 7

* 0.2

0.1

-0.5 0.0 0.5 1.0 1.5 2.0

Figure 5. User Selected Node Points for 14 Blocks in a Computational3- Domain of an 8% Circular Arc Cascade with a Flap.
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Figure 6. User Selected Numerical Schemes for the 14 Blocks in the
Computational Domain of an 8% Circular Arc Cascade with a

Flap.

marked for deletion, and the connectivity arrays of the interface nodes are

examined and adjusted for consistency in the data structure. Note that the

3 total number of cells in the overall grid remains invariant as the blocks are

assembled. Figure 7 shows the crude base mesh generated by IBGG after the

final assembly of inter-block interfaces. At this point, the data base

forgets about the blocks and all the alignments are in terms of individual

cells.

After the generation of the crude assembly all the cells with the same

numerical algorithm are stored together in the computer memory. These cells

need not be physically contiguous. At this stage computations can be carried

out on the crude grid since all the connectivity arrays are defined and

3 debugged. Alternatively, the crude assembly can be filtered through an

elliptic grid generator to move the nodes appropriately. This filtering

3 process does not cha,.ge the connectivity arrays but rather the spatial

coordinates of the nodes. An elliptic grid generator has been developed that

utilizes the pointer system of the unstructured grid connectivity arrays. In

its present form, it fixes the locations of the nodes on the physical

boundaries, but allows the interior nodes (including those which were

originally at block interfaces) to be displaced. Reference (18) presents an
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elliptic grid procedure for structured multiblock grids where special

treatment is needed at the block interfaces. No such special treatment is

needed for the overall unstructured data base utilized here.

Figure 8 shows the base grid after the IBGG has processed the previous

crude assembly through an elliptic grid generator which had no forcing

functions. For this figure, the nodes at the physical boundaries were held

fixed and the absence of forcing functions caused local distortions of the

grid lines near these boundaries. Reference (17) presents a procedure for the

determination of the interior grid forcing function values based upon their

values at the physical boundaries. Further evaluation of forcing functions

will be carried out in Phase II.

After the final grid assembly, regions of cells (irrespective of blocks)

can be manually subdivided to incorporate pre-embedding. Thus cells near

solid boundaries can be manually divided to capture boundary layers. Such

pre-embedding can result in enhanced spatial resolution without introducing

grid lines in the regions where they are not needed. Each cell can also be

spatially divided by the algorithm to incorporate subdomain adaptation.

Physics adaptation may be carried out in all the cells which previously

* belonged to interaction blocks.
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Figure 7. Initial Interior Grid Assembly for the Computational Domain
of an 8% Circular Arc Cascade with a Flap.
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Figure 8. Grid Assembly Produced by an Elliptic Grid Generator for the
Computational Domain of an 8% Circular Arc Cascade with a

Flap.

For the IBGG, various stages of the grid assembly or its parts can be

graphically viewed and debugged interactively. The user could request the

program for specific changes. For example, the user may move nodes in certain

regions, subdivide or fuse meshes, examine or query specific connectivities of

various elements (cells, nodes, boundary points), etc.

3.7 Physics Adaptation

The multiblock SCRAP technique simplifies physical complexity by

associating a numerical scheme to each of the blocks. Thus, one can have

viscous blocks where NS equations are solved and inviscid blocks where one

3 carries out the solution to Euler equations. Such a scheme-splitting

technique can efficiently model complex physics if the domains of viscous and

inviscid regions are known a priori. The SCRAP technique addresses this issue

by considering interaction blocks where a decision is locally made whether to

use Euler or NS equations. This dynamic physics switching is termed here as

physics (or equation) adaptation. The interaction blocks will be important

for the cases where the viscous/inviscid interaction region develops as part

3 of the numerical solution.
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There are numerous advantages for utilizing viscous/inviscid interaction

blocks in addition to separate inviscid and viscous blocks. For certain

applications, the user may know a priori exactly where the inviscid and

viscous parts are located. For example, in a missile configuration, the

"outer" region is always inviscid, and the flow near the surfaces or boundary

layers is always viscous. For such distinct regions, computer resources

should not be wasted in deciding which numerical scheme to use. Most flow

fields also possess regions where it is not clear whether to use a viscous or

inviscid formulation. Such regions should be selected as interaction blocks.

* Physics adaptation will be beneficial for these intermediate blocks that form

the buffer between viscous and inviscid blocks. If such interaction blocks

are not considered, then one has to generally treat such regions as being

fully viscous, and this may be a waste of resources. In addition, if viscous

and inviscid blocks are directly contiguous, then special treatment may be

needced at block interfaces to maintain conservation. It can be shown that

such treatment is not needed if interaction blocks are regarded as buffer

zones between viscous and inviscid blocks.

As shown in Subsection 3.3, the overall algorithm is decoupled into

contributions from viscous and inviscid terms. This means that Euler

equations are solved everywhere, including the viscous region. This is

followed by the determination of viscous cells in the interaction blocks.

These cells are lumped together with cells in the viscous regions. Additional

viscous contributions (corresponding to NS or TLNS equations) are then

computed for these viscous cells and added to the inviscid contributions. The

decoupled nature of the algorithm allows different time steps to be taken for

viscous and inviscid contributions. This is in line with the concept of local

time stepping for carrying out solutions to steady state problems. For these

steady state applications, the determination of viscous cells in the

interaction blocks can be carried out once every few hundred iterations. This

means that the CPU time associated with the process of selection of numerical

schemes will be small compared to the CPU time associated with the integration

of cells. For unsteady applications where the viscous/inviscid interaction

regions may grow significantly as part of the numerical solution, physics

adaptation may have to be carried out more frequently.

3
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Physics adaptation is incorporated by finding the maximum shear stress in

the cells of viscous and interaction blocks. Those cells of the interaction

block for which the shear stress is more than 1% of the maximum shear stress

are regarded as viscous cells. Since the shear stresses only change by a very

small amount near the interfaces between the contiguous viscous and inviscid

cells, a special treatment is not needed at these interfaces. The viscous and

inviscid contributions (respectively, SU. and &U. for all nodes j) are) J

separated out for each node. For those cells which are only regarded as

inviscid, the viscous contributions to its corresponding nodes is regarded

zero. Obviously at the interface between viscous and inviscid cells, some

nodes will have viscous contributions from viscous cells and the same nodes

will have no such contribution from inviscid cells. After these contributions

are summed, the process of updating is carried out by adding the overall

contributions to the previous values of the dependent variables.

It is appropriate to point out that the placement of the zonal interface

between inviscid and viscous solvers is very important. If the interface is

located in a region that is characterized by strong flow gradients that are

not modeled by Euler equations, then there would appear to be problems with

the overall solution. This is not really a shortcoming of the zonal gridding

technique but rather the fact that important physics is being neglected by

using the inappropriate mathematical models. Hence care must be exercised in

examining the overall geometrical configuration for the initial generation of

subdomain grids and the allocation of numerical schemes to these blocks. It

would seem logical to examine the relative magnitude of the stress tensor in

the inviscid blocks, after a specified number of iterations, to confirm the

validity of the inviscid part. If the stress values are found to be

substantial, then the overall algorithm should be able to reassign the

numerical schemes in corresponding subdomains.

As part of a feedback from ARO, a local basis for the selection of

viscous cells in the interaction blocks has been suggested. Thus, one may

compare the magnitude of viscous terms with convection (or pressure) terms

locally to select the viscous cells. Although the global approach has worked

fine for the selected model problem, its disadvantage is that two passes are

needed to accomplish the objective. In the first pass, maximum viscous stress

is determined (from vicous and interaction blocks) and the second pass tags
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the cells in the interaction region. For the local approach only a single

pass o;er the interaction blocks ceis will be needed to tag the cells

appropriately. Since the suggested approach was discussed towards the end of

the contract period, the Principal Investigator (PI) was unable to evaluate

it. The evaluation and utilization of a local approach to determine viscous

cells will be carried out in Phase II.

3.8 Subdomain Adaptation

The SCRAP technique also implements subdomain adaptation in which the

algorithm automatically implements additional spatial resolution by locally

dividing cells in the regions of enhanced gradients of selected flow field

variables. The details of this process have appeared in Refs. (9)-(12). This

multi-variable approach defines a single scalar criterion variable, based upon

the first differences of multiple components, that removes the effect of

inter-correlations between individual components. This measure allows an

unbiased spread of data for the cases when the variabilities in different

components are different and when some or all these components are correlated.

Since the single scalar variation is a transformation to the standardized

form, spatial domains characterized by different kinds of variablities can be

adapted by using the same procedure. Thus the same approach can be used to

adapt in the viscous and inviscid regions.

The cells for which the standardized variation exceeds a threshold limit

are locally subdivided. The cells for which the variations remain below

another smaller threshold value are allowed to merge. First differences of

density were used to adapt in the inviscid regions near shock waves, whereas

the first differences of x-velocity were found to be suitable to capture the

i boundary layer.

I
I
I
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4. PHASE I NUMERICAL RESULTS

I This section describes the numerical results of Phase I. The potential of

the SCRAP technique has been demonstrated for a supersonic flow over an 8%

circular arc cascade. This model problem is a benchmark case, and it is used

to test the current approach. Results have been obtained by utilizing various

combinations of different schemes on multiple zones (plus varying time steps

for viscous and inviscid schemes), physics adaptation and subdomain

adaptation. These results were compared with those utilizing full NS

equations on a single fine grid and yielded essentially the same answers for

the same boundary conditions. It was also found that utilization of the

characteristic approach versus the Riemann invariant approach for the subsonic

outflow boundary yielded somewhat different results. The results for the

subsonic outflow Riemann invariant approach, utilizing subdomain and physics

adaptation, compared very well with previous computations of other

* researchers.

The variation of the flow properties across the zonal interfaces was

found to remain independent of the interface itself. The fluid properties

also remain oblivious to those interfaces across which the grid changes

geometrically or different schemes are used. The technique provides

significant savings in CPU time and storage over conventional structured grid

algorithms employing a full NS solver. An increase of a factor of about 50 in

* computational speed was achieved when compared to a conventional full NS

solution over a fine grid of the same mesh size as the smallest grid size

chosen by the spatial resolution adaptation. Further savings can be produced

by considering additional levels of subdomain adaptation to capture small

scale features. This demonstration clearly establishes that simultaneous

physics and resolution adaptation works for the sample problem.

I 4.1 Model Problem

The potential of the SCRAP technique can be demonstrated by considering a

model problem in two spatial dimensions. Figure 9 shows the geometry and

initial fine grid for such a model problem. The distances are normalized by
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the chord length for this 8% circular arc cascade. The free stream Mach

number is 1.4, and the Reynolds number, based upon the chord length, .s

23,000. There are 51 points along the vertical and 173 points along the

horizontal (8823 nodes). This model problem was selected because the solution

for both Euler and NS equations is well known. A single fine grid was

initially chosen to test the algorithm and so that comparisons of CPU time can

be made with other adaptive solutions. Thus there are initially no blocks for

the solutions of Euler and full NS equations in this single grid.

Supersonic inlet boundary condition is applied at x=-l, whereas

characteristic outfluw condition is specified at x=2.0. For the most part,

the exit condition is supersonic with a subsonic region near y=O. The top

wall is considered to be inviscid solid slip wall with no vertical velocity.

The bottom wall is a slip wall for Euler equations, and a no-slip wall for NS

equations. Except where noted otherwise, the boundary condition for the

subsonic outflow is based upon the characteristic analysis for both viscous

and inviscid solutions.

I 1.0

0.a
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ii- IAq 0.qI . 0.2
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I Figure 9. Geometry and Initial Grid (51X173) For Supersonic Flow Over

an 8% Circular Arc Cascade.
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Figure 10. Density Contours for the Euler Solution for 8% Circular Arc
Cascade on a 51X173 Mesh System. The Increment for Density
Contours is 0.05.

* 4.2 Euler Solution

Figure 10 presents the Euler solution for the previous geometry and grid.

It is noted that the scheme has good shock capturing characteristics. This

solution agrees very well with those of other investigators. (1 9'20) The

incident shock is reflected back as a regular reflected shock from the top

boundary. This reflected shock intersects with the trailing edge shock and

also gets reflected at the lower surface. The supersonic outflow boundary

condition is clearly appropriate since the the trailing edge shock is absorbed

by the exit boundary rather than being reflected. The total CPU time for this

inviscid solution on SSI's Data General computer was 72 minutes when the RMS

residuals had subsided to below 10g.

3 4.3 Full Navier-Stokes Solution

Figure 11 represents the full NS solution for Re=23000 over the same grid

of 51x173 mesh points. The NS solution is distinctly different from the Euler

solution. The boundary layer changes the flow field, and this means that the

incoming flow now encounters an effectively larger obstruction. This has the

effect of changing the flow field in the inviscid part. For example near y=l,

instead of a regular reflection, a Mach disc formation is observed. The
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3 reflected shock interacts with the boundary layer and results in shock

wave/boundary layer interaction which causes it to separate.

Clearly, additional resolution is needed to resolve the separation

region. However, for the sake of simple CPU time comparisons with the adapted

cases to evaluate the proposed scheme in Phase I, this resolution was deemed

adequate. The computed solution is also somewhat different from that

presented in Refs. (15) and (21). This is because different sorts of boundary

U conditions were used for the subsonic outflow of the boundary layer. Since

substantial time and effort had already been invested in this fine grid

3 solution, it was decided to retain the same characteristic subsonic outflow

boundary condition for the adapted grid solutions presented in Subsections 4.4

and 4.5. A solution based upon Riemann invariant subsonic outflow boundary

condition was only carried out for the fully adapted solution, and it is

presented in Subsection 4.7. The latter agrees very well with the solutions

in the cited references.

The CPU time needed to converge to the same level of accuracy as the

Euler solution of Subsection 4.2 on the Data General machine was 4ound to be

178 minutes. For this case the same minimum time steps were used for the

viscous and inviscid contributions. When different time steps were used for

these contributions, the total convergence time was 165 minutes. Thus it is

found that using different time steps for viscous and inviscid contributions

marginally accelerates the convergence process. Since the solutions for these

I 1.0
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0.8 A 0.90
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0.0 
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Figure 11. Density Contours for the Full Navier-Stokes Solution for 8%

Circular Arc Cascade on a 51X173 Mesh System. The Increment
for Density Contours is 0.05.
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two cases were nearly identical, only the most restrictive time step solution

is presented here. The CPU time for the full NS solution is about a factor of

twu longer than for the Euler solution. It is reasonable to assume that this

ratio is Reynolds number dependent.

4.4 Physics Adaptation Solution

3 Figure 12 shows the grids corresponding to the three blocks that were

used for the physics adapted solution. The composite mesh is the same as in

the previous two cases. The domain is split into Euler, Interaction and NS

blocks and only part of the Euler block is shown. The viscous block is chosen

so that the boundary layer will be captured. The interaction block will

correspond to those parts of the boundary layer which may have been missed in

the NS block, and the regions where the reflected shock wave interacts with

3 the boundary layer.

Figure 13 shows the solution corresponding to physics adaptation

3 procedure. Those cells in the interaction block that lie near the region of

intersection of reflected shock wave and the boundary layer are automatically

tagged as viscous cells. Except for some minor changes, the solution is

essentially the same as the full NS solution.

i -- y-o5

Interootion

Novier-Stokes

w--O.I--2.0

Figure 12. Domain Splitting for Physics Adaptation Solution for 8%
Circular Arc Cascade on a Composite Mesh of 51X173 Points.
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Figure 13. Density Contours for the Physics Adapted Solution for 8%
Circular Arc Cascade on a 51X173 Initial Grid. Three
Separate Blocks were Used for NS, Interaction and Euler
Schemes. The Increment for Density Contours is 0.05.I

The CPU time needed to converge to the same level of accuracy as the

5 previous two solutions was found to be 82 minutes. The CPU time needed for

this case is only 14% more than that required for the full Euler solution.

This significant saving is achieved because the decision basis is limited only

to the Interaction block and because different time steps are used for viscous

and inviscid contributions.

4.5 Physics and Subdomain Adaptation Solution

Figure 14a shows the spatially adapted grid for a coupled solution of

physics adaptation and resolution adaptation. Two levels of spatial embedding

are carried out for resolution adaptation. Note that the base grid is twice

as coarse as the grid used for previous computations. Furthermore, the finest

mesh is half as fine as the previous case. The domain splitting for the

schemes is same as in the previous computation.

3 In order to avoid excessive numerical diffusion of the boundary layer on

this initial coarse grid, the regions in the boundary layer were manually

pre-embedded to a single level. This manual subdivision of the grid is

accomplished as part of the solution of IBCG. The subdomain adaptation (both

3grid division and fusion) is carried out automatically after a specified

I -44 -



number of iterations, and as is apparent fron. the figure it can be achieved

recursively. There are 11780 cells and 9820 nodes in the computational domain

for the final grid. First differences of density and x-velocity have been

used to accomplish spatial subdomain adaptation.

Figure 14b shows the solution corresponding to physics/subdomain

adaptation procedure. Additional resolution due to subdomain adaptation

allows the shock and boundary layer to be better resolved than the previous

global solutions. The solution in the other regions is very nearly the same.

The CPU time needed to converge, to a level of accuracy of RMS errors

being less than 10- 5 , was found to be 31 minutes. This means that the fully

adapted solution requires only 17% of the CPU time compared to that of the

full Navier-Stokes solution. However, even this comparison is not appropriate

since the fully adapted solution is twice as fine as the full NS solution.

This point is discussed further in the next subsection.
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Figure 14. (a) Final Spatially Adapted Grid Obtained by Utilizing SCRAP
Technique, and (b) Density Contours on this Grid with an

Increment of 0.05.
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4.6 CPU Time Comparisons

Figure 15 summarizes the CPU time comparisons for various cases. The

first column shows the actual CPU times in minutes for the various approaches.

The second column shows the normalized computer times, where the Euler

solution is regarded as the reference case. The third column indicates how

fast a particular approach is in reference to the full NS solution. The

3 normalized CPU time shows that full NS solution is 2.5 times slower than Euler

solution, 1'ereas the physics adapted solution for the same grid takes only

14% longer than the Euler equations to converge for the model problem.

It is seen that the fully adapted solution converges about 5.7 times

faster than the full NS solution. However, since the finest resolution of the

adapted grids is half as much as the global grid, a rough estimate shows that

the full NS solution with the same fine grid will take about 8 times longer to

converge. This estimate takes into account that there are four times as many

number of cells with twice the number of time steps. Furthermore, physics

adaptatioi itself is about 2.5 times faster. This translates into a total

additional factor of 20 w.r.t. the full NS solution. Hence, the fullyU
METHOD CPU TIME NORMALIZED FACTOR

S(miln) CPU TIME

EULER 72 1.0 2.5

3 FULL NS 178 2.5 1.0

I PHYSICS ADAPTATION 82 1.1 2.2

PHYSICS L SUBDOMAIN 31 0.4 5.7"
ADAPTATION

I . . .. .. .

9 115 times roster than correspondln 9 Pull NS solution.

3 Figure 15. CPU Time Comparisons for Various Approaches.
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adapted solution is about two orders of magnitude faster than the

corresponding full NS solution. With additional spatial levels of adaptation,

one can achieve even larger factors. For 3-D computations, this saving will

be even more substantial.

3 4.7 Adapted Solution With Alternate Outflow Boundary Condition

3 In order to compare the solution of the viscous problem with those in

Refs. (15) and (21), the fully adapted solution was carried out with similar

I outflow boundary conditions. The subsonic outflow boundary condition

corresponds to the extrapolation of Riemann invariants from the interior

domain. Pressure was inferred from the supersonic portion of the boundary

layer and was held fixed for the subsonic part. Only the fully adapted

solution was repeated because it runs significantly faster.

The initial composite grid was chosen to be composed of 25 x 25 points

because the resolution along the x-axis is of less importance. Furthermore,

S the grid in the boundary layer was additionally compressed compared to the

previous computations. The scheme-splitted blocks were similar to the

I previous cases.

Figure 16a shows the final adapted grids with two levels of spatial

adaptation. There are a total of 3852 nodes and 4624 cells in this

configuration.

Figure 16b shows the density contours for the grid in Fig. 16a. It is

observed that the boundary layer is better resolved than any of the previous

cases. This means that the incomming flow observes a somewhat smaller bump,

3 and the flow is less choked. The Mach disc at the top surface is less severe,

and the reflected shock wave reaches the boundary layer aft of the airfoil

3 trailing edge. The boundary layer re-attaches itself at an earlier location,

and the shock reflection emanating from the boundary layer is somewhat

stronger.

Figure 17 presents the contours of Mach number. These agree very well

with the computations presented in Refs. (15) and (21). Figure 18 represents

the distribution of pressure along the airfoil surface; the agreement with

Refs. (15) and (21) is again very good.

I
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Figure 16. (a) Final Spatially Adapted Grid obtained by Utilizing SCRAP

Technique, and (b) Density Contours on this Grid with an3 Increment of 0.05.
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Figure 18. Pressure Distribution Along the Lower Channel Wall for the
8% Circular Arc Cascade.

I The results presented in this section clearly demonstrate that

simultaneous physics and resolution adaptation works for the sample problem.

I The technique provides significant savings in CPU time and storage over

conventional structured grid algorithms employing a full NS solver. An

I increase of about two orders of magnitude in computational speed was achieved

when compared to a conventional full NS solution over a fine grid of the same

mesh size as the smallest grid size chosen by the spatial resolution

adaptation.

4I
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I 5. CONCLUSIONS AND SUMMARY

U The Phase I effort has successfully demonstrated the b~sic feasibility of

simultaneous physics and subdomain adaptation for multiblock grids. The

technique provides significant savings in CPU time and storage over

conventional structured grid algorithms employing a full NS solver over a fine

grid of the same mesh size as the smallest grid size chosen by the spatial

resolution adaptation. The SCRAP technique yields essentially the same

results as the global calculation over a fine grid system. The results were

also compared with previous computations and were found to be in good

agreement. This successful demonstration of proof of concept in Phase I has

formed the basis for extension to 3-D in Phase II.

The results presented in Section 4 clearly demonstrate that simultaneous

physics and resolution adaptation works for the sample problem. An increase

of about two orders of magnitude in computational speed has been achieved when

compared to a conventional full NS solution over fine grids. The savings in

computer storage is also substantial since globally fine grids are not needed.

The agreement of the full' idapted solution with globally refined solutions

and previous computations is excellent. The features that enhance the

efficiency of the technique include (1) different solvers on different blocks

and their dynamic switching, (2) different time steps for viscous and inviscid

contributions, and (3) subdomain adaptation. Other advantages of the scheme

include:

3 S ease in generating grids for complex geometries,

* ease in handling complex physics of specific zones,

I 0 accurate modeling of features like shock waves, recirculation
regions, etc.,

3 S greater speed compared to traditional schemes,

* greater accuracy compared to traditional schemes,

0 comparatively less storage required for same accuracy.

I
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The advantages for the SCRAP technique for three spatial dimensions will

be even more dramatic. Formulation of the data management connectivities for

3-D will be carried out in Phase II. This work will produce a user-friendly

software package that will alleviate the need for a single grid and allow

concentration of computational resources in modeling complex physics only in

3 regions of importance. This technique will result in an analysis tool that

can be applied in carrying out flow simulations for complex and irregular

3 geometries at large angles of attack. Such simulations often involve

physically complex conditions of shock waves, boundary layers, separation and

3 recirculation regions and their interactions. This analysis tool will more

accurately predict the resultant forces and moments on practical aerodynamic

geometries. This will lead to an accurate computation of the trajectory and

design of guided projectiles.
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